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Abstract: Channel estimation refers to the method and process of receiving channel state information.The
accuracy of channel estimation determines the performance of the receiver, so channel estimation must be
carried out before equalization.Nowadays, the laser channel estimation for optics transmission becomes a
key technology in free space optical communication in multiple-input multiple-output orthogonal
frequency division multiplexing (FSO —MIMO —OFDM) system. Although the traditional method of
compression sensing, as an effective method for channel estimation, has the ability to recover and
reconstruct the original signal, it has paid a certain cost in computational complexity. A novel fast
Bayesian matching pursuit (FBMP) algorithm was proposed to overcome the low reconstruction precision
and high complexity of the existing methods. Through the prior model selection and approximate
minimum mean squared error (MMSE) estimation of the parameter vector, the FBMP algorithm provided
an efficient way to estimate the channel impulse response and was characterized by high reconstruction
accuracy and low complexity. Simulation results show that the proposed method can significantly improve
the performance of the system compared with the traditional compressed sensing(CS).
Key words: compressed sensing; sparse channel estimation; fast Bayesian matching pursuit;
FSO-MIMO-OFDM
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0 Introduction

The channel of free space optics (FSO) system for
atmospheric scattering channel, will be affected by
dust, rain, fog and other particles, while the cyclic
guard interval is introduced in, at the receiving end can
be used in simple frequency domain equalization and
eliminate multipath interference caused by atmospheric
scattering, but in the frequency domain equalization
must be known before the channel frequency accuracy
on each sub carrier response. FSO communicating™! in
MIMO -OFDM system with a machine brings out
many advantages in practice, yet results in several
technological challenges, such as how to significantly
increase the transmission accuracy and improve the
spectral efficiency. The key is how to obtain the
channel state information (CSI) accurately in MIMO-
OFDM system for speech signal transmission.

Due to the sparse structures of the rich multipath
channels, the channel can be modeled as a tapped
delay line (TDL) in the time domain, since the large
delay spread and the sparseness of resolvable
multipath allow only a few taps to be nonzero ™.
Conventional channel estimation methods could not
take advantage of the multipath channel inner sparse
prior knowledge. Therefore, the accuracy and
effectiveness of channel estimation are not accurate
enough. CS has recently been applied for pilot-aided
sparse channel estimation. Recently, CS'™! has been
studied for sparse signal recovery from a few of linear

measurements for long time in applied sparse channel

estimation. CS as one of the channel estimation
methods has been extensively studied in™!. However,
the performance of CS —based channel estimation
scheme hangs on reliable sparse recovery algorithms.
We investigate some representative existing approaches
including matching pursuit (MP), orthogonal matching
pursuit (OMP)P!, and stage wise orthogonal matching
pursuit (SOMP) ¥l etc. Above-mentioned algorithms

belong to greedy algorithms whose complexity
depends on the number of iterations or finding set of
support. These algorithms have lower reconstruction
precision, though they can be implemented -easily.
Therefore they have relatively poor performance and
limited applications. Meanwhile, certain algorithms such
as Basic Pursuit (BP)™ belong to convex optimization
algorithms whose computational complexity is about
O(N*)'®¥1. Despite the algorithms can exactly recover
sparse signal, its long computational time resulting in
high complexity is not applicable for large scale data
of speech communication system.

Recently, a Bayesian approach was adopted for
sparse channel estimation via model selection and
model averaging in Ref.[9]. Sparse Bayesian Learning
(SBL) ™ is one of the Bayesian-based approaches
adopted for sparse channel estimation for OFDM
systems in Ref. [11]. Compared with other channel
estimation algorithms, Bayesian-based scheme have
higher performance recourse to probabilistic priors.

We introduce a CS recovery algorithm —FBMP
proposed in Ref.[12] which can reduce the complexity

by a fast metric update and can be implemented
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easily in contrast to SBL approach. Through the prior
model selection of sparse multipath channels and
parameter estimation, FBMP based channel estimation
techniques are capable of obtaining more efficient

estimator and faster convergence rate.

1 Channel model for speech transmission
in FSO-MIMO-OFDM

The total number of subcarriers is L in FSO -
MIMO-OFDM systems. There are N, transmit antennas
and N, receive antennas to transmit speech signal.
After speech encoding and modulation, the data bits
are divided into N, streams, and then the serial data
symbols are converted into parallel blocks. Then each
block performs pilot insertion, L point IFFT and
cyclic extension. It is worth noting that the
modulated signals are then space-time coded using
Alamouti Space Time Block Coding(STBC)™! scheme.
the channel vector is

The impulse response of

represented as

hi()= Y, o 8(t-,) (1)

=0
Where, afli’j) is the fading coefficient of the n —th
multipath; 7, is the relative delay of the n—th multipath.
It is assumed that all the channels between N, transmit
antennas and N, receive antennas hold the same delay
profile. N is the number of multipath. The sparsity of
time-domain channel is determined by the channel
power.

After the removal of FFT and CP, the original
speech signal at the j —th receive antenna can be
written as

N,
Y= 2 (Fh)o XD+ W9 j=1,--- N, 2)

i=1

) 0 I .
There, ¥ 9=[Y,, - ,YLI 1T is the frequency-domain
received signal vector at j—th receive antenna; F' is LxN

discrete Fourier transform(DFT) matrix, whose (/,n)—th

o) )

element is Fj,=e ™™ W O=[W , --- W, 1" is the

complex noise; X”>=[X(li),---,X(Li)]T is the modulated symbol

vector at the i—th transmit antenna; "o " represents
multiplication by element.
Pilots of different transmit antennas insert

different subcarriers in the frequency domain. Before
the channel estimation, the received signal vector of
the j—th receiving antenna is separated from the pilot
frequency of the i—th transmitting antenna, and can be
represented as a received signal vector

(i) gD

Y _fM Fhtdo X;]i)+fj‘;)W(iJ) (3)

P
Where, M is the number of pilot; f;; is the M-by-N

(N>M) pilot extraction matrix,and can be written as
)

fM:(epl e]lM)T (4)
Where, e, is the unit column vector, p; element is 1.
The other elements is 0, and T={p,,p,, " .pu} is the
index set that represents the pilot position. Since pilots
are known receivers, the following equations can be

implemented for channel estimation.
ROI=Y,"s X\ =f. FR»+ W'=Oht»+ W' (5)
Where @:ff:F e C", R% e C" and h™ e CV is sparse and

. (i) o)
the vector that we want to obtain. W'=f, W X .

Because @ and R are readily available in the receiver.

h' can be restored by the CS algorithm.

2 FBMP algorithm for sparse channel

estimation

2.1 Signal model for compressed sensing
In order to apply the FBMP algorithm proposed
in Ref.[12], we let r=R “, h=h “ and w=W’ in the
following. Hence, Eq.(5) also can be written as
r=0Oh+w (6)
Where, the w is white Gaussian noise with variance o2,
i.e., w~N (0,0°I)). Due to O e C"™ (N>M), Eq.(6) is
an over-determined case and & is a suitably sparse

parameter vector (i.e., IlAll;<<N).

N-1

To model sparsity, we assume that {h,} the

n=0 >

component of %, are i.i.d. random variables drawn
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from a two—dimensional Gauss mixing matrix. We know
that few elements of the vector & are nonzero because
of the sparsity of the multipath channel. Since this priori
information, we introduce a new parameter vector z
which is also sparse and the nonzero locations in
specify which of the elements in & are nonzero. For
each h,, a mixture parameter z, € {0,1} is used to index
the component distribution.

Especially, when z,=¢

(g €{0,1}), then the coefficient h, is modeled as a

circular Gaussian with mean 0 and variance O'j:
2
h1{z=q}~N(0,0,) (7

. N-1
The mixture parameters {z,} ,_, are treated as

random variables such that P.{z,=1}=p, and P,{z,=0}

=1 -p;. so that the case z,=0

We choose Ui =0,
implies h,=0, whereas the case z,=1 allows £,7# 0. In
addition, we choose p, <1 which ensures that (with
high probability) the coefficient vector i has relatively

few nonzero values.

Using h=[hqy, - 7hN—1]T and z=[z, 9ZN—1]T7 the
priors can be written as:
hlz~N(0,R(z)) (8)

Where, the R(z) is the covariance matrix with respect
to the discrete random vector z=[z,, - ,zv-1]7. And

here, we set R(z) to be a diagonal matrix with [R(2)],,=
o, implying h,1{z,=1}~N (0.0.) that and /,1{z,=0}~

2
N(0,0,).
According to Bayes rule, the relationship of z, &

and r is shown as the equation in the following.

)= p(r,h,z) _ p(rlh,2)p(h,z) _
p(2) p(2)

p(HhDpHIDPE) 1y 2 p(hiz) ©))
p(2)

Because the relationship of z and 4,

p(r,hlz

the p(rlh,
z) is equivalent to p (rlh), so the Eq.(9) can be
written as:

p(r,hlz)=p(rih)p(hlz) (10)

From the model we can gain

% 46 %
r ' () OR
N0 [p 5o RS (I
Where
d(2):=OR(2) O"+0°1, (12)

2.2 Estimation of parameter z based on FBMP

According to the aforementioned model, the
solution of ~ can be reduced to estimation of z. So,
we first to analyze the parameter z.

The posterior can be written as

p(rlz)p(z)
S (2 () (13)

Where Z={0,1}". Because {p(rlz)p(z)}.., has the same

p(zln=

monotonicity with {p(zlr)}.., and the latter is more
practical to compute, we can compute {p(rlz)p(2)}..z
in order to estimate the parameter z. Working in the

log domain, we find
N-1

w(2):=Inp(rlz)p(z)=Inp(rlz)+ 2 Inp(z,)=

n=0

Inp (rlz)+zllnp,+(N-IlIzll))In(1-p,)=

1np(r|z)+||z||01nf’17+N1n(1—p1)=
1

g’ 1n27r——1ndet(@(z))—— Fd(2) '+
||z||01nL1 }7 +NIn(1-p)) (14)
1

Where combined with Eq.(13),

exp -1 T(D(Z)_lr =

Inp(rlz)=In >

1
CmMId()"?
];] 1n2fn'—2—lndet( CD(z))—— Td(z)r  (15)

We refer to w(z) as the basis selection metric.

Now we describe an efficient mean to estimate z
which is called Fast Bayesian Matching Pursuit.

More specifically, z, denote a vector which is
same to z except for the n™ coefficient and we set
[z.].=1 and [z],=0. Then we compute the metric
increment: A,(z):=w(z,)—pr(z). What must be noted is

that the metric at the root node (i.e., z=0) is

anFn'——lnol—

w(0)=— IIrII L+NIn(1-p)  (16)

Via Eq.(12) we can know that
D(0)=0"ly 17)
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To obtain the fast metric update, we start with
the property that
@(z,)=0OR(z,) O"+0°1,=O(R(2)+A) O"+0°l,=
OR(2)O'+OAO +L,=D()+0 0,0  (18)
Where the A is a NxN matrix whose elements are all
zero but [Al,,, and [A],=0. =0,.

0, expresses the n—th

column of matrix 6.

As is shown in the Appendix, we can obtain:

B(2)'=D(2) -0 Bupup, (19)
©.:=D(2)7'0, (20)
Bi=(1+0. 0, @) (21)

Combined with Eq.(14), yield
2

w(z,)= /U«(z)+ Ing, +*B(r <Pn)z+1nlL (22)

2

M@=p(a) (=g 0B+ T BT Hin P - (23)
1

In summary, A, (z) in Eq.(23) quantifies the
change due to the activation of the n™ tap of z.

From Egs.(19)—(21), the complexity of computing

{B,,}::: is O(NM?). Then, exploiting the structure of

@(z)™, we can save the cost to be linear in M.
We set that t=[f,,t,,-+,t,]" consists of the induces of

active elements in z. Then, from Eq.(17) and Eq.(19),
2 P T
q)(z)_]:(}TlM_o-l z,‘:l Br, (Pt, <Pt, (24)

When activating index n =f; in the mixture

parameter vector, ¢, and [, represent the values of ¢,

and $,. From Eq.(20), we are required to compute

1

. P T
(Pn=F 0"_0-2 z i=1 Bt, @ P, 0, (25)

i)
=c,

When activating the n™ tap in z. The key point is

.. (i) N-1
that we need to compute the coefficients {c, } ,_, only

N-1
.o only need

when index f; is activated. Moreover, {c }
to be calculated for extracting induces #. These are the
foundation of the FBMP algorithm. Table 1 shows the
steps of FBMP algorithm and distinctly verifies that the

iteration complexity of that algorithm is O(NMPD).

Tab.1 Fast Bayesian matching pursuit

FBMP algorithm

1AL, +NIn(1=p,);

Mn,l——g 1r121'r——lnol— 0_2

for n=1:N,
(;Ln:(fzen;
- > T~
Br.=(1+0,0, )"

Z

IJvln Mo, 1+*IHB +7B (rTbI u)2+ln

17 1
end
for n=1:D;
n==n corresponding to k" largest ;I] 5
-~ (€)] 1y

M = P«wln ‘P]k P CH @@u’ BM B

(&)]
tl)kzn;:;

end
for p=2:P
for d=1:D
for n=1:N
p-1 (i)

Cu=070,~ i@, lB,, l[C,, ld],,

Bz[‘11=(1+0-] 0,, ‘Pd D7

,U«du - |u+ lann"'inH( bu.n)Z‘HHﬁ;
-

ifne(s, },:,1 then p,,=—
end
end
for k=1:D
{d.,n.}={d,n} corresponding to k" largest ;Id,,;

P~ ») ») (p)

)T . Py
/Jq;k—/v'vd’rx*s Py ik =Parnrs €, ;(—@ Py B, A—anu

for i=1 : p=1,
(GO (GO (GO (0!
Cpr=Pp1k> Cpa=Cp1 k5 Bp,kzﬁp—l,k; L=t ks

end
end
end

2.3 Estimation of sparse channel &

In section 2.2, we have got the mixture
parameter z. However our primary goal is to estimate
the sparse channel & when the mixture parameter z is
known. Here, we use "minimum mean square error"
(MMSE) to estimate the parameter vector /.

The MMSE estimate of & from r is

home:=E{hlr}= 2, p(zIrE{hlr,z} (26)

Where z from Eq.(11) it is straight forward to
obtain in Ref.[14]
E{hlr,z}=R(z) O"®(z)'r (27)
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So, via Eq. (26), the parameter vector h, i.e.,

channel impulse response A'”, has been obtained.

3 Simulation results and analysis

The simulations are carried out to evaluate the
performance of the FBMP algorithm from Tab.1 by
using 2 x2 MIMO —OFDM systems. The simulation
parameters are shown in the Tab.2. The channel
length is chosen as N =50. There are 6 main paths
(sparsity of channel: K=6) in Rayleigh fading channels,
so we set p;=0.12 because the p; denotes the probability

of h,70 which means main paths in multipath channel.

Tab.2 Simulation parameters

Parameters Specification
FFT size 256
No. of carriers 256
Guard interval 32
Signal constellation QPSK

Channel model Rayleigh fading

No. of frames 1 000

When referring to the "normalized mean-squared
error" (NMSE) of an estimate fz we mean E{Ilﬁ—hllzl

IIhIIz }. And the Signal to Noise Ratio (SNR) means

101g10(1A1/\h—h?).

Furthermore, traditional algorithm LS, CS -—based
OMP algorithms are chosen to compare with FBMP
algorithm.

Figure 1 depicts the NMSE versus and the SNR,
which is averaged over 1 000 OFDM block at every
SNR value. Where, the SNR value is known to us
from 0 dB to 30 dB. Figure 1 shows the performance
of FBMP compared with the LS, OMP algorithms.
We can see that the NMSE of FBMP is about 5 dB
lower than OMP method and about 20 dB lower than
LS method for SNR in 15 dB and the performance
superiority is more and more obvious with the

increasing of SNR.

NMSE/dB

L LS
_a2ol ~~FBMP
308+ omp
>0 5 10 15 20 25 30
SNR/dB

Fig.1 NMSE comparison of different estimation methods

Figure 2 shows the Bit Error Rate (BER) versus
the SNR of channel estimation in MIMO —OFDM
system with the LS, OMP and FBMP algorithms.
From the Fig.2, we can observe that performance of
the FBMP algorithm is superior to other two
algorithms. Therefore, it can be seen that the former
shows the better performance and more efficient to

estimate channel in MIMO-OFDM.

| -=Ls
10°r < pRMP
-+OMP
0 5 10 15 20 25 30
SNR/dB

Fig.2 BER comparison of different estimation methods

Figure 3 denotes the SNR versus the different
number of pilot, which is averaged over 1 000 OFDM
block at every number of pilot. Fig.3 shows the SNR

45

| -=-LS
40 o omp
35F —«FBMP
30F

25f

20 4
151
10p
5]

0;__’_9——0———9_’_'6—'
10 15 20 25 30 35
Number of pilot

SNR/dB

Fig.3 SNR comparison of different number of pilot for the three

estimation methods
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of FBMP compared with the LS, OMP algorithms in
channel estimation in MIMO—-OFDM system. We can
see that SNR value of FBMP is always higher than
LS and OMP with the number of pilot ranging from
10 to 35.

Figure 4 shows the BER versus the SNR with
different sparsity(K=2, 4, 6, 8, 10) for FBMP algorithm.
In this simulation, the actual sparsity of channel is 6.
The Figure 4 shows that BER of FBMP gradually
declines with the sparsity growth, and when K=2 and
K=4, the performance of the algorithm is relatively poor
and the curves of K=6, K=8, K=10 are very similar. This
shows that only when the priori sparsity K is equal to or
greater than the actual channel sparsity can we obtain

accurate channel state information.

10°
[
107+

107

BER

107

10+

10° L L L
0 S 10 15 20 25 30

SNR/dB

Fig.4 SNR comparison of different sparsity for the FBMP algorithm

4 Conclusion

This

transmission

paper focused on the speech signal

in FSO -MIMO -OFDM
studied

system and

mainly the channel estimation technology

based on compressed sensing and reconstruction
algorithm FBMP. Compared with traditional LS and
CS —based OMP and SP channel estimation method,
FBMP based

capable of obtaining efficient sparse channel estimates

channel estimation technique were

by making full use of channel sparse prior in FSO -
MIMO-OFDM systems.
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